Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1226-0088(Print)
ISSN : 2288-7253(Online)
Membrane Journal Vol.23 No.5 pp.332-342
DOI :

탄화조건이 메틸이미드계 탄소 분자체 중공사 분리막의 기체 투과특성에 미치는 영향 연구

성 기 혁, 송 주 섭, 고 형 철*, 하 성 용*, 한 문 희, 조 철 희
충남대학교 녹색에너지기술전문대학원, *(주)에어레인

Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes

Churl Hee Cho, Ki Hyeok Seong, Ju Sub Song, Hyung Chul Koh*, Seong Yong Ha*, Moon Hee Han
Graduate School of Green Energy Technology, Chungnam National University, Yuseong-gu, Daejeon, Korea
*Airrane Co. Ltd, 120 Shinsungnam-ro, Yusung-gu, Daejeon 306-791, Korea
(Received October 3, 2013, Revised October 7, 2013, Accepted October 9, 2013)

Abstract

In the present study, carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing amethyl imide hollow fiber precursor, which was spun by non-solvent induced phase separation process. And effects of carbonizationparameters such as pre-oxidation, pyrolysis, and post-oxidation on the gas permeation were systematicallyinvestigated. CMS membrane having the highest gas flux was obtained by carbonizing the precursor through a combinedprocess of air pre-oxidation at 250°C for 2h, nitrogen pyrolysis at 550°C for 2h, and oxygen post-oxidation at 250°C for 2h.The optimized membrane showed a considerable gas permeance : the H2, He, CO2 permeances were 69.72, 35.61, 31.01GPU, respectively, and the O2 and N2 permeances were ignorable. Therefore, it was clear that the prepared CMS hollow fibermembrane was a promising membrane for recovering small gases such as hydrogen and hellium and carbon dioxide.

Reference

1.Y. M. Lee, H. B. Park, and I. Y. Suh, "Preparation and Application of Carbon Molecular Sieve Membranes for Gas Separation", Membrane Journal, 11, 1 (2001).
2.Y. G. Park and Y. M. Lee, "Membrane Fouling in the Membrane Process", Membrane Journal, 6, 1 (1996).
3.D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (2011).
4.J. Koresh and A. Softer, "Molecular sieve carbon permselective membrane. Part 1. Presentation of a new device for gas mixture separation", Sep. Sci. Technol., 18, 723 (1983).
5.S. M. Saufi and A. F. Ismail, "Fabrication of carbon membranes for gas separation–a review", Carbon, 42, 241 (2004).
6.H. Suda and K. Haraya, "Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide", J. Phys. Chem. B., 101, 3988 (1997).
7.J. E. Koresh and A. Soffer, "Mechanism of permeation through molecular sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure", J. Chem. Soc., Faraday Trans. 1., 82, 2057 (1986).
8.J. M. Bauer, J. Elyssini, G. Monocorge, T. Nodari, and E. Totino, "New developments and application of carbon membranes", Key Eng. Mater., 61-62, 207 (1991).
9.J. Peterson, M. Matsuda, and K. Haraya, "Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation", J. Membr. Sci., 85, 131 (1997).
10.E. Schindler and F. Maier, Manufacture of porous carbon membranes. US Patent 4919860, April 24 (1990).
11.K. M. Steel. "Carbon membranes for challenging gas separations", Ph.D. Dissertation, University of Texas, Texas, Austin (2000).
12.V. C. Geiszler and W. J. Koros, "Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties", Ind. Eng. Chem. Res., 35, 2999 (1996).
13.A. B. Fuertes and T. A. Centeno, "Preparation of supported carbon molecular sieve membrane", Carbon, 37, 679 (1999).
14.L. Xu, M. Rungta, and W. J. Koros, "MatrimidⓇ derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation", J. Membr. Sci., 380, 138 (2011).
15.E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on MatrimidⓇ5218 precursor", J. Mater. Process. Technol., 186, 102 (2007).
16.P. S. Tin, T.-S. Chung, S. Kawi, and M. D. Guiver, "Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides", Microporous Mesoporous Mater., 151, 73 (2004).
17.H. Maab, S. Shishatskiy, and S. P. Nunes, "Preparation and characterization of bilayer carbon/ polymer membranes", J. Membr. Sci., 326, 27 (2009).
18.D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003).
19.K. Briceno, A. Iulianelli, D. Montane, G.-V. Ricard, and A. Basile, "Carbon molecular sieve membranes supported on nonmodified ceramic tubes for hydrogen separation in membrane reactors", Int. J. Hydrogen Energy, 37, 3536 (2012).
20.L. Y. Jiang, T.-S. Chung, and R. Rajagopalan, "Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers", Carbon, 45, 166 (2007).
21.A. B. Fuertes, D. M. Nevskaia, and T. A. Centeno, "Carbon composite membranes from MatrimidA and KaptonA polyimides for gas separation". Microporous Mesoporous Mater., 33, 155 (1999).
22.S. Shishatskiy, C. Nistor, M. Popar, S. P. Nunes, and K. V. Peinemann, "Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions onGas Transport Properties", Adv. Eng. Mat., 8, 390 (2006).
23.Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, "Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane", J. Membr. Sci., 134, 245 (1997).
24.A. B. Fuertes, "Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes", Carbon, 39, 697 (2001).
25.V. C. Geiszler, B. S., and M. S. ChE, "polyimide precursors for carbon molecular sieve membranes", Ph.D. Dissertation, the university of texas, texas, austin (1997)
26.C. Liang, G. Sha, and S. Guo, "Carbon membrane for gas separation derived from coal tar pitch", Carbon, 37, 1391 (1999).
27.A. Soffer, D. Rosen, S. Saguee, and J. Koresh, "Carbon membranes", GB patent 2207666, (1989).
28.A. Soffer, A. Azariah, A. Amar, H. Cohem, D. Golub, S. Saguee, et al., "Method of improving the selectivity of carbon membranes by chemical vapor deposition", US patent 5695818, December 9 (1997).
29.N. Tanihara, H. Shimazaki, Y. Hirayama, S. Nakanishi, T. Yoshinaga, and Y. Kusuki, "Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber", J. Membr. Sci., 160, 179 (1999).
30. K. Haraya, H. Suda, H. Yanagishita, and M. Matsuda, "Asymmetric capillary membrane of a carbon molecular sieve", J. Chem. Soc., Chem. Commun., 1781 (1995).
31.J. Petersen, M. Matsuda, and K. Haraya, "Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas permeation", J. Membr. Sci., 131, 85 (1997).
32.E. P. Favvas, G. E. Romanos, S. K. Papageorgiou, F. K. Katsaros, A. C. Mitropoulos, and N. K. Kanellopoulos, "A methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes", J. Membr. Sci., 375, 113 (2011).
33.H. Suda and K. Haraya, "Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide", J. Phys. Chem., 101, 3988 (1997).
34.E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid ® 5218 precursor", J. Mater. Process. Technol., 186, 102 (2007).